Structure of bottle brush polymers on surfaces: weak versus strong adsorption.
نویسندگان
چکیده
Large-scale Monte Carlo simulations are presented for a coarse-grained model of cylindrical molecular brushes adsorbed on a flat structureless substrate, varying both the chain length N of the side chains and the backbone chain length N(b). For the case of good solvent conditions, both the cases of weak adsorption (only 10 to 15% of the monomers being bound to the surface) and strong adsorption (~40% of the monomers being bound to the surface, forcing the bottle brush into an almost 2D conformation) are studied. We focus on the scaling of the total linear dimensions of the cylindrical brush with both chain lengths N and N(b), demonstrating a crossover from rod-like behavior (for not very large N(b)) to the scaling of 2D self-avoiding walks. Despite the fact that snapshot pictures suggest a "worm-like" picture as a coarse-grained description of such cylindrical brushes, the Kratky-Porod worm-like chain model fails because there is no regime where Gaussian statistics applies. We compare the stiffness (orientational correlations of backbone bonds, persistence length estimates, etc.) of the adsorbed bottle brush polymers with their corresponding 3D nonadsorbed counterparts. Consequences for the discussion of pertinent experiments are briefly discussed.
منابع مشابه
Bioinspired bottle-brush polymer exhibits low friction and Amontons-like behavior.
We report the design of a bottle-brush polymer whose architecture closely mimics the lubricating protein lubricin. Interaction forces, assessed using a Surface Forces Apparatus (SFA), between two mica surfaces fully covered by the polymer demonstrate that the polymer adopts a loop conformation giving rise to a weak and long-range repulsive interaction force between the surfaces. Under high comp...
متن کاملPrimary versus ternary adsorption of proteins onto PEG brushes.
Polyethylene glycol (PEG) brushes are used to reduce protein adsorption at surfaces. Their design needs to allow for two leading adsorption modes at the brush-coated surface. One is primary adsorption at the surface itself. The second is ternary adsorption within the brush as a result of weak PEG-protein attraction. We present a scaling theory of the equilibrium adsorption isotherms allowing fo...
متن کاملConformational studies of bottle-brush polymers absorbed on a flat solid surface.
The adsorption of a bottle-brush polymer end-grafted with one chain end of its backbone to a flat substrate surface is studied by Monte Carlo simulation of a coarse-grained model, that previously has been characterized in the bulk, assuming a dilute solution under good solvent conditions. Applying the bond fluctuation model on the simple cubic lattice, we vary the backbone chain length N(b) fro...
متن کاملInteraction between brush layers of bottle-brush polyelectrolytes: molecular dynamics simulations.
Interactions between tethered layers composed of aggrecan (charged bottle-brush) macromolecules are responsible for the molecular origin of cartilage biomechanical behavior. To elucidate the role of the electrostatic forces in interaction between bottle-brush layers, we have performed molecular dynamics simulations of charged and neutral bottle-brush macromolecules tethered to substrates. In th...
متن کاملThe slowly formed Guiselin brush
– We study polymer layers formed by irreversible adsorption from a polymer melt. Our theory describes an experiment which is a “slow” version of that proposed by Guiselin (Europhys. Lett., 17 (1992) 225) who considered instantaneously irreversibly adsorbing chains and predicted a universal density profile of the layer after swelling with solvent to produce the “Guiselin brush”. Here we ask what...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 115 48 شماره
صفحات -
تاریخ انتشار 2011